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Abstract. We start with a non-commutative version of the Jackiw–Teitelboim gravity in two dimensions
which has a linear potential for the dilaton fields. We study whether it is possible to deform this model by
adding quadratic terms to the potential but preserving the number of gauge symmetries. We find that no
such deformation exists (provided one does not twist the gauge symmetries).

1 Introduction

Dilaton gravities in two dimensions [1] are a good testing
ground for many theoretical ideas also relevant in higher
dimensions. After some field redefinitions almost all inter-
esting models of that type can be written in the form

S =

∫
d2xεµν

(
φ∂µων+φaDµe

a
ν − εabe

a
µe
a
νV (φ)

)
, (1)

where eaµ is the zweibein, ε
µν is the Levi–Civita symbol

(see Appendix A for our sign conventions). The covariant
derivative

εµνDµe
a
ν = ε

µν
(
∂µe

a
ν +ωµε

a
be
b
ν

)
(2)

contains the spin connection ωµε
a
b. Here φ is a scalar field

called the dilaton. φa is an auxiliary field. In the commu-
tative case, which we are considering at the moment, any
choice of the potential V (φ) leads to a consistent model.
Two examples are of particular importance for us. A con-
stant potential V corresponds to the (conformally trans-
formed) string gravity, also called theWitten black hole [2].
For a linear potential, V (φ) ∝ φ, one gets the Jackiw–
Teitelboim (JT) model [3], whose equations of motion were
studied earlier in [5].
The auxiliary field φa generates the condition that ωµ is

the Levi–Civita connection compatible with eaµ. Under this

condition εµν∂µων becomes proportional to the usual Rie-
mann curvature (the terms proportional to φa, of course,
disappear). In this way one arrives at a second order for-
malism, which may be more familiar to some of the readers.
However, the first order action (1) has many advantages
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over the second order one. For instance, the classical equa-
tions of motion are much easier to solve [6], and in the
quantum case, it is possible to perform the path integral
over the geometric variables even in the presence of addi-
tional matter fields [7].
In this paper we study which models of 2D dilaton grav-

ity can be formulated on non-commutative spaces. Let us
define the star product of functions which will replace the
usual point-wise multiplication. The Moyal star product of
functions on R2 reads

f � g = f(x) exp

(
i

2
θµν
←−
∂ µ
−→
∂ ν

)
g(x) . (3)

θ is a constant antisymmetric matrix. This product is asso-
ciative, (f �g)�h= f � (g �h). In this form the star product
has to be applied to plane waves and then extended to all
(square integrable) functions by means of the Fourier se-
ries [8]. Obviously,

xµ �xν−xν �xµ = iθµν . (4)

Furthermore, the Moyal product is closed,

∫
M
d2xf �g =

∫
M
d2xf × g (5)

(where× denotes the usual point-wise product), it respects
the Leibniz rule

∂µ(f � g) = (∂µf)� g+f � (∂µg) (6)

and allows one to make cyclic permutations under an inte-
gral:

∫
M
d2xf �g �h=

∫
M
d2xh�f � g . (7)
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The complex conjugation reverses the order of factors,

(f � g)∗ = g∗ �f∗ . (8)

The product (3) is not the only possible choice of an asso-
ciative non-commutative product. The right hand side of
(4) can depend, in principle, on the coordinates.
An important step towards constructing a satisfactory

non-commutative gravity was recently made by Wess and
collaborators [9], who understood how one can construct
diffeomorphism invariants, including the Einstein–Hilbert
action, on non-commutative spaces (see also [10] for a real
formulation). There is, however, a price to pay. The dif-
feomorphism group becomes twisted; there is a non-trivial
coproduct due to which the action of the symmetries on
tensor products looks very unusual [11, 12].
In two dimensions it is possible to construct non-

commutative (dilaton) gravity models with an usual
(non-twisted) realization of gauge symmetries. A non-
commutative version of the Jackiw–Teitelboim (NCJT)
model was constructed in [13] and then quantized in [14].
A non-commutative Witten black hole model was sug-
gested in [15]. Both these models are of the Yang–Mills
type: the JTmodel is equivalent to a topological BFmodel;
the Witten black hole may be represented as a Wess–
Zumino–Novikov–Witten model. There are some general
procedures of how such models can be formulated in
the non-commutative case [13, 16]. It is important there-
fore to check whether one can go beyond the Yang–Mills
paradigm. Besides, if we are on the right track, dilaton
gravities should exist not only for linear or constant po-
tentials, but also for an arbitrary potential V . In the
present paper we study whether quadratic potentials are
allowed.
To analyze the gauge symmetries we use the canoni-

cal formalism for non-commutative spacetime developed
in [15]. This is not a canonical formalism in the usual sense
of the word1 [17, 18], but it makes it possible to define the
notion of first-class constraints and to associate a gauge
symmetry to them. As to commutative gauge theories, it
was conjectured by Dirac that all first-class constraints act
as generators of gauge transformations. For some classes of
commutative gauge theories this conjecture can be proved
and, in addition, it turns out that the number of inde-
pendent non-trivial gauge transformations is equal to the
number of primary first-class constraints [17]. The sym-
metry structure of a general commutative gauge theory
was recently described in detail and related to the con-
straint structure of the theory in the Hamiltonian formu-
lation [19]. In particular, the gauge charge was constructed
explicitly as a decomposition in the special orthogonal con-
straint basis. It was demonstrated that, in the general case,
the gauge charge cannot be constructed with the help of
first-class constraints alone, for its decomposition also con-
tains special combinations of second-class constraints.

1 Since the space-time non-commutative theories are non-
local in time and contain an infinite number of time derivatives
hidden in the star product, it is obvious that some modification
of the standard canonical formalism is necessary.

Consider those classical actions which can be repre-
sented in the form

S =

∫
d2x
(
pi∂0qi−λ

i �Gi(p, q)
)
, (9)

so that the expressions (“constraints”)Gi(p, q) do not con-
tain explicit time derivatives (implicit time derivatives are
always present through the star product). The paper [15]
demonstrated that one can define the canonical pairs ig-
noring implicit time derivatives in the star product. In
this sense the pi become canonically conjugated to qi. The
brackets are then defined by the equation

{qi(x), p
j(y)}= δji δ

2(x−y) . (10)

This definition can be extended to all polynomial function-
als on the phase space [15]. If the brackets between the
constraints are again linear combinations of constraints,
then the non-commutative action has a gauge symmetry
associated to each Gi. In this sense, the Gi may be called
first-class constraints.
The most unusual property of the bracket (10) is the

presence of the delta-function of the time coordinates on
the right hand side. However, since the space-time non-
commutative theories are non-local in the time direction,
restriction of the brackets of the phase space variables cal-
culated at the same value of time does not look natural
and even consistent. The presence of an additional delta-
function in (10) reminds us of the Ostrogradski formalism
for the theories with higher temporal derivatives (see [20,
21] and [15] for a more extensive discussion). Anyway, one
can also use the brackets (10) to analyze gauge symmetries
in commutative theories. It is not clear, however, whether
one can use the modified brackets for quantization. In the
present paper we shall exclusively use (10) to define the
Poisson structure.
We shall demonstrate that one cannot consistently add

quadratic terms to the dilaton potential of the NCJT
model, so that it is stable against such deformations.

2 Non-commutative Jackiw–Teitelboim
gravity

A non-commutative version of the Jackiw–Teitelboim
model has been constructed in [13]. It has been identified
with a U(1, 1) gauge theory on non-commutative R2. The
action reads

S(0) =
1

4

∫
d2x εµν

[
φab �

(
Rabµν −2Λe

a
µ � e

b
ν

)
−2φa �T

a
µν

]
,

(11)

with curvature tensor

Rabµν =ε
ab

(
∂µων−∂νωµ+

i

2
[ωµ, bν ]+

i

2
[bµ, ων ]

)

+ηab
(
i∂µbν− i∂νbµ+

1

2
[ωµ, ων ]−

1

2
[bµ, bν ]

)
,

(12)
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and with non-commutative torsion

T aµν = ∂µe
a
ν −∂νe

a
µ+
1

2
εab
(
[ωµ, e

b
ν ]+− [ων, e

b
µ]+
)

+
i

2

(
[bµ, e

a
ν ]− [bν, e

a
µ]
)
. (13)

There are two dilaton fields, φ and ψ, which are combined
into

φab := φεab− iηabψ . (14)

All commutators (denoted by square brackets) and anti-
commutators (denoted by [ , ]+) are calculated with the
Moyal star product.
We note that (11) contains more fields than the ini-

tial commutative model. This is related to the fact that
the gauge group of the commutative JT model, which is
SU(1, 1), cannot be closed on the non-commutative plane.
To make the closure, one introduces additional U(1) fields
ψ and bµ which decouple in the commutative limit.
One can rewrite (11) in the canonical form:

S(0) =

∫
d2x
(
pi∂0qi−λ

i �G
(0)
i

)
, (15)

where

qi = (e
a
1, ω1, b1) ,

pi = (φa, φ,−ψ) , , (16)

λi = (ea0, ω0, b0) .

The constraints are

G(0)a =−∂1φa+
1

2
εba[ω1, φb]++

i

2
[φa, b1]

+
Λ

2

(
−εab[e

b
1, φ]++iηab[e

b
1, ψ]
)
, (17)

G
(0)
3 =−∂1φ+

i

2
[φ, b1]+

i

2
[ψ, ω1]−

1

2
εab[φa, e

b
1]+ ,

(18)

G
(0)
4 = ∂1ψ−

i

2
[ψ, b1]+

i

2
[φ, ω1]+

i

2
[φa, e

a
1] . (19)

One can check that the constraint algebra closes, and the
brackets between the constraints read

{∫
αa �G(0)a ,

∫
βb �G

(0)
b

}

=−
Λ

2

∫ (
εab[α

a, βb]+ �G
(0)
3 +i[αa, β

a]�G
(0)
4

)
,

(20){∫
α�G

(0)
3 ,

∫
β �G

(0)
3

}
=
i

2

∫
[α, β]�G

(0)
4 , (21)

{∫
α�G

(0)
4 ,

∫
β �G

(0)
4

}
=−

i

2

∫
[α, β]�G

(0)
4 , (22)

{∫
α�G

(0)
3 ,

∫
β �G

(0)
4

}
=−
i

2

∫
[α, β]�G

(0)
3 (23)

{∫
α�G

(0)
3 ,

∫
βa �G(0)a

}
=−
1

2

∫
[α, βa]+ ε

b
a �G

(0)
b ,

(24){∫
α�G

(0)
4 ,

∫
βa �G(0)a

}
=−

i

2

∫
[α, βa]�G(0)a . (25)

Here we introduced a short-hand notation
∫
:=
∫
d2x.

3 Deformations

Let us now discuss deformations of the NCJT model. We
shall add some terms to the action (11) so that (i) the field
content of the model will not be changed, and (ii) the num-
ber of secondary first class constraints (and, consequently,
the number of gauge symmetries) will also remain invari-
ant. Being inspired by commutative dilaton gravitymodels
we only consider the deformations of the potential term,
and we only add terms of the next (quadratic) order in the
two dilaton fields φ and ψ.
In addition to analogies with the commutative case,

there are also other reasons for not considering deforma-
tions of the curvature and torsion terms. For example, re-
placing φab in (14) by a non-linear function of the dilatons
is equivalent to a redefinition of the dilaton fields. Adding
higher powers of the curvature in general adds new degrees
of freedom to the theory, and this is a more drastic modifi-
cation than the usual understanding as deformations. The
same also holds for torsion terms.
Further restrictions on possible deformations are im-

posed by the global symmetries of the model which we
would like to preserve. First of all, we require the symmetry
with respect to global rotation of the tangential and world
indices. This implies that all indices must be contracted
pair-wise. We also require that the terms being added are
of even parity. Since φ is a scalar, and ψ is a pseudo-scalar,
even (odd) powers of ψ should be multiplied with even
(odd) powers of the Levi–Civita symbol ε. As a result, we
obtain the following family of quadratic deformations of
the NCJT model:

S = S(0)+ S̃ , (26)

where

S̃ =

∫
d2x

(
εµνεab

(
c1e
a
µ � e

b
ν �φ

2+ c2e
a
µ � e

b
ν �ψ

2

+c3e
a
µ �φ�e

b
ν �φ+ c4e

a
µ �ψ �e

b
ν �ψ
)

+ εµνηab

(
c5e
a
µ � e

b
ν � [φ, ψ]+ ic6e

a
µ � e

b
ν � [φ, ψ]+

+
i

2
c7(e

a
µ �φ�e

b
ν �ψ− e

a
µ �ψ�e

b
ν �φ)

))
. (27)

The arbitrary constants c1, c2, ..., c7 must be real to pre-
serve the reality of the total action S. The powers are taken
with the star product, for example φ2 ≡ φ�φ.
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The constraints read

Ga =G
(0)
a + G̃a, G3 =G

(0)
3 , G4 =G

(0)
4 , (28)

where

G̃a = εab
(
c1[e

b
1, φ

2]++ c2[e
b
1, ψ

2]++2c3φe
b
1φ+2c4ψe

b
1ψ
)

+ηab
(
c5[e

b
1, [φ, ψ]]+ ic6[e

b
1, [φ, ψ]+]

+ic7(φe
b
1ψ−ψe

b
1φ)
)
. (29)

Our next step is to check whether the constraint algebra
still closes on the constraint surface 2. Since the constraints
G3 and G4 are unchanged, the brackets between them,
(21)–(23), are the same. It is an easy exercise to check that
for all values of the constants cm{∫

α�G4,

∫
βa � G̃a

}
=−

i

2

∫
[α, βa]� G̃a . (30)

Consequently, for any values of cm the bracket between
G4andGa,

{∫
α�G4,

∫
βa �Ga

}
=−

i

2

∫
[α, βa]�Ga , (31)

is again a constraint in the new set (28), so that we are
getting no restrictions on cm.
Let us now consider the bracket between G3 andGa,

{∫
α�G3,

∫
βa � G̃a

}
=
1

2

∫ [
c1
(
βa � [[α, e

a
1]+, φ

2]+

+iβa � εab[e
b
1, [[α,ψ], φ]+]+

)
+ c2
(
βa � [[α, e

a
1]+, ψ

2]+

−iβa � εab[e
b
1, [[α, φ], ψ]+]+

)
+2c3 (βa �φ� [α, e

a
1]+ �φ

+iβa � εab([α,ψ]� e
b
1 �φ+φ�e

b
1 � [α,ψ])

)
+2c4

(
βa �ψ � [α, e

a
1]+ �ψ

−iβa � εab([α, φ]� e
b
1 �ψ+ψ�e

b
1 � [α, φ])

)
+ c5
(
βa � εab[[α, e

b
1]+, [φ, ψ]]

+iβa � [e
a
1, [[α,ψ], ψ]− [φ, [α, φ]]]

)
+ic6

(
βa � εab[[α, e

b
1]+, [φ, ψ]+]

+iβa � [e
a
1, [[α,ψ], ψ]+− [φ, [α, φ]]+])

+ ic7
(
βa � εab(φ� [α, e

b
1]+ �ψ−ψ� [α, e

b
1]+ �φ) (32)

+ iβa � ([α,ψ]� e
a
1 �ψ−φ�e

a
1 � [α, φ]

+[α, φ]� ea1 �φ−ψ�e
a
1 � [α,ψ]))

]
.

First we observe that the right hand side of (32) contains
no terms with derivatives. This excludes the possibility of
the bracket (32) containing any terms proportional to (17),

2 In principle, other substantial modifications of the con-
straint algebra may occur, but not in the present case. We limit
the number of gauge symmetries to four, so only four first-class
constraints are allowed, because there are only four canonical
pairs of variables. Therefore, the only possibility is that Gi are
first class and that their brackets give again linear combinations
of Gi.

(18), or (19). Therefore, this bracket can only be propor-
tional to (29), with coefficients (structure functions) as in
(24), so that the bracket between G3 and Ga sums up to
become{∫

α�G3,

∫
βa �Ga

}
=−
1

2

∫
[α, βa]+ ε

b
a �Gb . (33)

We have to compare the expressions on both sides of (33)
to get restrictions on the constants cm. There are no mono-
mials on the right hand side of (33) which are second order
in φ and have an explicit i factor. At the same time, there is
such a term proportional to c5 in (32). Since all cm are real,
we conclude that

c5 = 0 . (34)

Next we compare the terms in which two φ appear next to
each other 3 (combined in φ2). Those terms agree on both
sides of (33) if and only if

c6 =−c1 . (35)

By comparing the terms where two fields φ appear sepa-
rated by other fields, we obtain the following condition :

2c3 =−c7 . (36)

Then we repeat the same procedure with the terms which
are quadratic in ψ to get

c2 = c6 , 2c4 =−c7 . (37)

The comparison of mixed terms (containing both φ and
ψ) does not produce any additional restrictions on cm. We
conclude that only two independent constants (say, c1 and
c7) remain, so G̃a can be rewritten as

G̃a = c1
(
εab[e

b
1, φ

2−ψ2]+− iηab[e
b
1, [φ, ψ]+]

)
+ c7
(
−εab(φ�e

b
1 �φ+ψ�e

b
1 �ψ)

+iηab(φ�e
b
1 �ψ−ψ�e

b
1 �φ)

)
. (38)

It remains to study the brackets between Ga and Gb. Ob-
viously, the brackets between G̃a and G̃b vanish, so that all
new information is contained in the brackets between G

(0)
a

and G̃b. The strategy is the same as above. First we analyze
the derivative terms:{∫

αa �G(0)a ,

∫
βb � G̃b

}
+

{∫
αa � G̃a,

∫
βb �G

(0)
b

}

=

∫ [
c1
(
∂1φ� ([φ, εbc[β

b, αc]+]++i[ψ, [αb, β
b]]+)

+ ∂1ψ � (−[ψ, εbc[β
b, αc]+]++i[φ, [αb, β

b]]+)
)

+ c7
(
∂1φ� (−εbc(β

b �φ�αc+αc �φ�βb)

+ i(αb �ψ�βb−βb �ψ �α
b))

−∂1ψ � (εbc(β
b �ψ �αc+αc �ψ�βb)

+i(αb �φ�βb−βb �φ�α
b))
)]

+non-derivative terms . (39)

3 This also includes the terms which can be put in this form
by using property (7).
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From this equation we see that, since the bracket between
Ga and Gb must be a linear combination of the constraints
(28), the constraints appearing on the right hand side can
only be G3 and G4, since the derivative ∂1φa belonging to
Ga is not present. In fact, one can also obtain the struc-
ture functions from (39), but their precise form will not be
needed. Let us consider the terms in the bracket which con-
tain the zweibein ea1 and the dilaton φ:{∫

αa �G(0)a ,

∫
βb � G̃b

}

=

∫ [c1
2

(
εbc[β

b, ec1]+ � [φ, ε
d
a[α

a, φd]+]+

−[βb, e
b
1]� [φ, [α

a, φa]]+
)

+
c7

2

(
−εbcβ

b � εda([α
a, φd]+ � e

c
1 �φ+φ�e

c
1� [α

a, φd]+)

+ βb(φ�e
b
1 � [α

a, φa]− [α
a, φa]� e

b
1 �φ)

) ]
(40)

+terms without eb1 or φ ,

The arguments presented above show that if the bracket
(39) closes on existing constraints, these constraints areG3
andG4, and the structure functions depend on φ and ψ. In
bothG3 andG4 the fields e

a
1 and φb appear in the combina-

tions [φa, e
b
1] or [φa, e

b
1]+, i.e. they stay next to each other.

Therefore, all terms where φb and e
a
1 appear separated by

other fields should vanish. Let us check whether this can be
achieved by adjusting the remaining parameters c1 and c7.
Let us study the terms with φ, φ0, α

0, β0, e01 where α
0 and

β0 stay next to each other, but φ0 and e
0
1 are separated. All

such terms in (39) can be easily collected with the help of
(40). They read

∫
c1

2
[α0, β0]� (φ0 �φ�e

0
1− e

0
1 �φ�φ0) . (41)

Since they are not allowed we conclude

c1 = 0 . (42)

Let us now collect all other terms with the same field com-
ponents where again φ0 and e

0
1 are separated but without

any restrictions on the placement of α0 and β0:
∫
c7

2
[e01, φ]� (β

0 �φ0 �α
0−α0 �φ0 �β

0) . (43)

Such terms are also not allowed. Therefore,

c7 = 0 . (44)

We have just demonstrated that no consistent quadratic
deformation of the NCJT model exists. This means that
the NCJT model is stable against such deformations.

4 Conclusions

In this paper we studied whether it is possible to deform
the action of the NCJT model by adding quadratic terms

to the dilaton potential while preserving the number of
first-class constraints. The answer we obtained is negative.
This, of course, does not exclude the existence of inter-
esting NC gravity models. There is still the possibility of
existing other interacting NC dilaton gravities with usual
(non-twisted) gauge symmetries. However, it is clear that
most of the commutative dilaton gravity models (which
admit arbitrary dilaton potentials) cannot be extended
to the non-commutative set-up in this approach. There-
fore, our results may be considered as a strong argument
in favour of the “twisted” approach [9], which allows for
practically arbitrary self-interactions of scalar fields. We
also point out some earlier results [22] which show that
deformations of 2D gravities are trivial if one does not in-
troduce a certain amount of the quantum group structure.
Another important result is the construction of twisted
conformal symmetries in two dimensions [23]. To incor-
porate twisted symmetries in the canonical formalism one
should probably include twists into the canonical formal-
ism itself.
Finally, since the spherical reduction of higher-dimen-

sional Einstein gravities produces some dilaton gravities in
two dimensions, one can expect that our no-go result can
be somehow extended to higher dimensions.

Acknowledgements. This work was supported in part by the
DFG project BO 1112/13-1.D.M.G. is grateful to the founda-

tions FAPESP and CNPq for permanent support, and R.F.
would like to thank FAPESP for their financial support.

Appendix : Notation and useful identities

Our sign conventions are taken from [1]. We use the ten-
sor ηab = ηab = diag(+1,−1) to move indices up and down.
The Levi–Civita tensor is defined by ε01 =−1, so that the
following relations hold

ε10 = ε01 = 1, ε01 = ε
1
0 =−ε0

1 =−ε1
0 = 1 . (A.1)

These relations are valid for both εab and εµν . Note that
εµν is always used with both indices up.
The following useful identities hold for arbitrary func-

tions A1, A2, B1 and B2:

∫
([A1, B1]� [B2, A2]− [B1, A2]� [A1, B2])

=−

∫
[A1, A2]� [B1, B2] , (A.2)

∫
([A1, B1]+ � [A2, B2]+− [A1, B2]+ � [A2, B1]+)

=−

∫
[A1, A2]� [B1, B2] , (A.3)

∫
([A1, B1]+ � [B2, A2]− [B1, A2]+ � [A1, B2])

=

∫
[B1, B2]� [A1, A2]+ , (A.4)
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∫
([A1, B1]� [A2, B2]− [A1, B2]+ � [A2, B1]+)

=−

∫
[A1, A2]+ � [B1, B2]+ . (A.5)

By means of the formula

εabεcd = ηbcηad−ηacηbd (A.6)

one can get rid of repeated ε-symbols.
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